

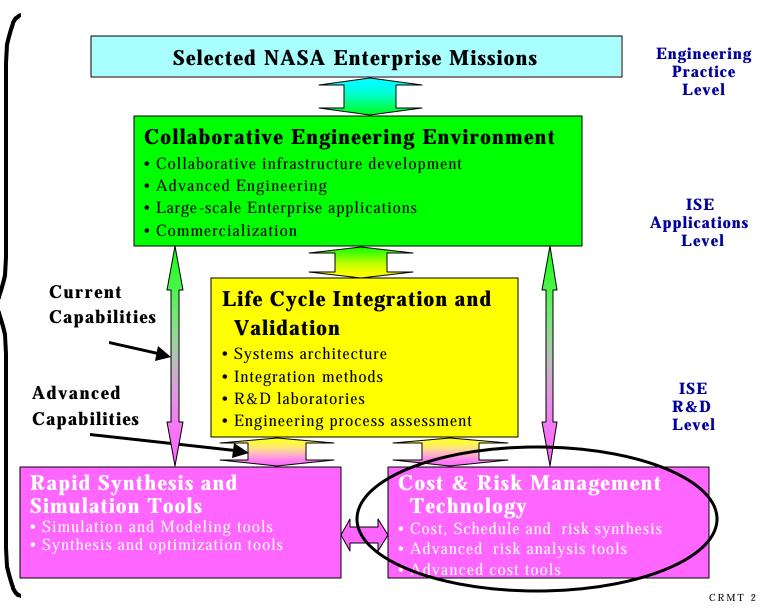
Intelligent Synthesis Environment Initiative

Intelligent Synthesis Environment Industry/Academia Workshop

Cost and Risk Management Technology Element

ISE Industry/Academia Workshop Langley Research Center October 28 - 29, 1999

Arlene Moore - Element Manager - LaRC Kelley Cyr - Element Deputy Manager - JSC



Relationship Between ISE Elements

Intelligent Synthesis Environment Industry/Academia Workshop

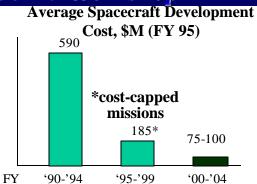
Revolutionize
Cultural
Change,
Training and
Education

- Experimentation
- Infusion
- Transition to Practice

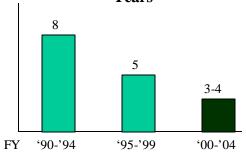
Cost and Risk Management Technology Background

Intelligent Synthesis Environment Industry/Academia Workshop

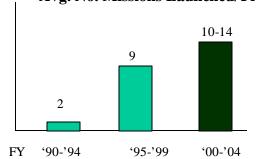
Historical Perspective


- NASA's mission is inherently challenging
- Predicting cost and schedule and mitigating NASA's risks is a challenge
 - NASA's has a history of cost and schedule overruns
 - First launch success rate for launch vehicles is ~ 50%


Present


- Era of "Better, Faster, Cheaper" and changing business practices
 - Safety is the number one priority of the Agency
 - Cost- and schedule-constrained missions
 - Science program emphasis on frequent launches of small missions
 - Technology demonstrators and X-vehicles

<u>Future</u>


NASA's challenge for the 21st Century is to maximize science return and technology investments in space and aeronautics at **affordable cost** and **minimal risk**

Annual Flight Rate, Avg. No. Missions Launched/Yr

Cost and Risk Management Technology Goals and Challenges

Intelligent Synthesis Environment Industry/Academia Workshop

Goals

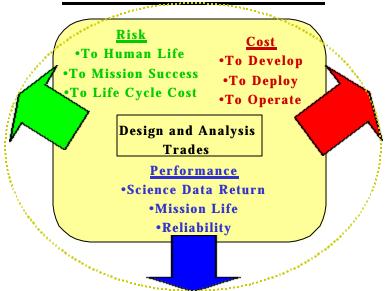
- Establish a basis for trades between performance, cost, schedule and risk parameters
- Provide NASA with reliable life cycle cost and risk management tools,
 models and methodologies early and throughout the life cycle

Challenges

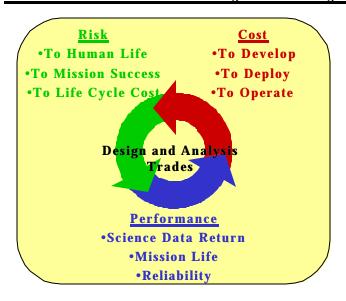
- Cost and risk toolset across all mission types and over the full life cycle does not presently exist with desired fidelity
- Cost and risk methods not support rapid assessment of future missions and advanced technology
- Perceived reliability of cost and risk tools, models and methods is not well understood
- Integration of cost and risk disciplines into the design space is a nontraditional way of doing business

CRMT VISION

Enhance the decision-making process by the infusion of relevant and timely cost, economic, schedule and risk information throughout the system life cycle



Cost and Risk Management Technology Approach


Intelligent Synthesis Environment Industry/Academia Workshop

THE INTEGRATION OF COST, SCHEDULE AND RISK DATA INTO THE LIFE CYCLE DESIGN AND ANALYSIS TRADE SPACE IS A MAJOR CULTURE SHIFT

NASA's Current Practice

NASA's Future Life Cycle Analysis

- Reliable, high-fidelity predictive capabilities are needed to provide total life-cycle cost and risk analyses for rapid assessments of all mission types in all program phases
- Establish connectivity between cost, schedule, risk and performance parameters Performance, cost, schedule and risk analyses are loosely coupled under current practices

5-Year Targets

Intelligent Synthesis Environment Industry/Academia Workshop

- Focused Research
 - Pathfinder investigations/demonstrations of non-traditional methods applied to cost, schedule, risk models
 - Pathfinder investigations/demonstrations of ISE technologies (I.e., visualization, advanced information technology, etc.) applied to cost, schedule, risk models
- Updated toolkit to model Life Cycle Cost (LCC) for NASA systems
 - Documented tools
 - Compatibility of cost processes and tools with performance tools, methods and processes facilitated
 - Cost processes and tools integrated into advanced environments in collaboration with LCIV and CEE
- Updated risk management toolkit to support Agency risk management initiatives
 - Emphasis on analyzing risk early and tracking risk throughout the life cycle
 - Compatibility of risk management processes and tools with performance tools, methods and processes facilitated
 - Documented tools
 - Risk management processes and tools integrated into advanced environments in collaboration with LCIV and CEE

Critical Technology Challenges

Intelligent Synthesis Environment Industry/Academia Workshop

- Fundamental cultural issues exist with both risk management and cost estimating analysis within the design and analysis function
 - Typically regard as systems engineering and management functions, not part of design and analysis
 - These functions/disciplines are generally not well understood by the engineering and scientific communities

Credibility Gap

- Cost and risk models are difficult to validate (not validated by experimental data)
- Not physics-based
- Technical variances propagate to risk, schedule and cost (ex: weight growth, power margins, etc.)
- Systems estimated is often not the system acquired (requirements change)

Data Issues

- Proprietary issues; data integrity; data obsolescence
- Modeling capability is highly dependent on historical data

• Integration of cost and risk into the design space

- Cultural issues (common language, lack of understanding, cultural boundaries etc)
- Acceptance issues
- Parameter space becomes very large
- Cost and risk analyses are performed last at the end of a sequential process

Technology Needs

Intelligent Synthesis Environment Industry/Academia Workshop

· Cost, Schedule and Risk Synthesis

- Integration standards and protocols
- Synthesis methods and architectures
- Validation methods
- Advanced data/knowledgebase technologies
- ISE technologies applied to cost and risk management processes

Advanced Risk Analysis Tools

- Advanced methods applied to risk analysis tools and processes
- Algorithm development

Advanced Cost Tools

- Advanced methods applied to cost analysis tools and processes
- Algorithm development

CRMT Organizational Structure

Intelligent Synthesis Environment Industry/Academia Workshop

Intelligent Synthesis Environment

COST AND RISK MANAGEMENT TECHNOLOGY (CRMT)

Manager: Arlene Moore, LaRC Deputy Manager: Kelley Cyr, JSC

CRMT MANAGEMENT TEAM

Team Lead: Arlene Moore Deputy Team Lead: Kelley Cyr

Jose Caraballo, LaRC Hamid Habib-agahi, JPL David Shelton, KSC Freddie Douglas, SSC Ted Hammer, GSFC Bob Shishko, JPL John Greco, LaRC Andy Prince, MSFC Brijendra Singh, GRC

Bob Sefcik, GRC

CRMT TECHNICAL WORKING GROUP

Group Leader: Kelley Cyr

Large Scale Application Leads

STS - Dave Shelton, KSC

ISS - Bob Shishko, JPL

RSTS - Andy Prince, MSFC

IE/S - Keith Warfield, JPL

Advanced EOS - Ted Hammer, GSFC

Summary

Intelligent Synthesis Environment Industry/Academia Workshop

- NASA's challenge for the 21st Century is to maximize science and technology investments in space and aeronautics at affordable cost and minimal risk
- CRMT will provide a cost and risk analysis capability consisting of:
 - Advanced cost and risk management tools
 - Compatible with an Agency-wide collaborative infrastructure and engineering environment
 - Integrated, validated and tested in relevant environments
 - Demonstrated and put into practice on multiple mission life-cycles
 - Ability to synthesize cost, schedule, and risk information within the engineering design process